Denso CASE (Connectivity, Automation, Sharing and Electrification) Research Report, 2020
  • Jul.2020
  • Hard Copy
  • USD $3,400
  • Pages:105
  • Single User License
    (PDF Unprintable)       
  • USD $3,200
  • Code: DYN03
  • Enterprise-wide License
    (PDF Printable & Editable)       
  • USD $4,800
  • Hard Copy + Single User License
  • USD $3,600
      

As one of the top three Tier1 suppliers in the world, Denso makes adjustments and deployments during the automotive industry disruption.

Sorting out Denso’s existing product lines, up to 200-plus varieties are found, including virtually 70 for CASE (connectivity, automation, sharing and electrification). 

Denso’s CASE Products (Part)

Denso 1_副本.png 
Source: Marklines; ResearchInChina

The number of auto parts will decrease in the trend towards CASE. In a recent opinion, automotive hardware will be standardized and contribute declining revenue and profits, and future competition lies in the ability to develop software-defined vehicles. Emerging carmakers have late-mover advantages with more software talents.

Another view is that Tier1 suppliers will be marginalized by OEMs (e.g., Tesla and VW) who try to lead research and development of operating system, DCU (or vehicle central computer) and core software and hardware systems.

It can be seen from Denso’s CASE layout that the supplier not only makes deployments in all aspects of hardware but spends on software not less than IT-backed firms.

Denso’s Investment in Hardware
The US government’s crackdown on Chinese high-tech companies shows that just developing software and applications at the upper layer is not enough, and holding basic materials, core components and basic software is the only way to be free of others.

Denso lavishes heavily on core fundamental technologies, including magnetic materials, power semiconductors, solid-state batteries, magnetic heat pumps, human-computer interaction, AI, sensors, and quantum computing.

denso 2_副本.png

In 2018, Denso invested FLOSFIA and collaborated with the latter on developing a next-generation power semiconductor material (α-Ga2O3) for vehicle application. Schottky Barrier Diode (SBD), Flosfia’s α- Ga2O3 material, can work under 600V and 10A, with rated power of 100W-1kW, outperforming SiC products in both efficiency and cost. SBD is expected to be spawned in 2020. Theoretically, SBD material is seven times more efficient than GaN in low frequency and doubles GaN in high frequency or more.

Denso has been devoted to researching automotive semiconductor technology since its IC Laboratory was set up in 1968, having made improvements in ECU, sensor and other products. In September 2017, Denso founded a subsidiary -- NSITEXE, a developer of next-generation high-performance semiconductors. DFP (data flow processor) independently developed by NSITEXE, differs totally from CPU and GPU. For practical use of DFP, Denso and NSITEXE then invested Blaize and quadric.io, two semiconductor start-ups. Blaize, founded by former workers at Intel in 2012, builds software and process architectures from the underlying layer for better AI computing. NSITEXE helps to develop an autonomous driving technology which makes instant judgment in extreme scenarios, by combining DFP and EPU from quadric.io.

Leading Tier1 suppliers from Japan and Germany often adopt IDM model and have their own chip fabrication plants, compared with IC designers focusing on prevailing FABLESS model in China. Denso Hokkaido is Denso’s key manufacturing site of semiconductor sensors. To meet the robust demand from electrification and autonomous driving markets, Denso plans expansion of its Hokkaido plant. The expansion project will break ground in July 2020 and be completed in June 2021. The number of employees will expectedly rise to about 1,150 in 2025.  

Denso’s Investment in Software
In 2025, Denso will boast 12,000 software talents worldwide; it will have more than 1,000 staffs and over 1,100 patents in autonomous driving field.

In addition to workforce enlargement for independent development, Denso also invests quite a few software firms.

denso 3_副本.png

Denso’s Big Competitive Edges in an Age of CASE
From Denso’s alliance, acquisitions and investment map as below as well as the Abstract of this report, it can be seen that Denso is sinking to research and development of core technologies and parts.


 denso 4.png
Source: Denso

Tier1 suppliers once gave an impression that they were suppliers of integrated systems for OEMs. As OEMs more set foot in system integration, Denso has turned to research and development of more basic core technologies. Weighed by new entrants from all walks of life, Denso still stays competitive on the strength of its across-the-board product matrices, economies of scale, and software and hardware synergy.

For example, Denso’s cockpit systems integrated with HMI and air-conditioning technologies will offer better user experience. This is an impossibility for the majority of companies who fail as well in high integration at the underlying layer.

 denso 5_副本.png
Source: Denso; ResearchInChina

1. Profile and R&D of Denso

1.1 Profile
1.1.1 Introduction
1.1.2 Development Course
1.1.3 Revenue Breakdown (by Customer), FY2020
1.1.4 Revenue Breakdown (by Product), FY2020
1.1.5 Revenue Target of Mobility Business, 2025
1.1.6 Alliance Strategy
1.1.7 Denso’s Business Presence in China
1.2 Denso’s Automotive Product System
1.2.1 Automotive Product System
1.2.2 Automotive Electronics
1.2.3 Main Divisions and CASE Related Products
1.3 R&D Layout and Research Direction
1.3.1 Global R&D System
1.3.2 R&D Input, FY2016-2020
1.3.3 Future R&D Input
1.3.4 R&D Orientations
1.3.5 Automotive Electronics Development Direction

2. Autonomous Driving (AD) Products and Layout

2.1 Denso’s AD Layout
2.1.1 Fields to be Covered by Denso AD Technologies in 2025
2.1.2 Denso’s AD Technology Plan
2.1.3 Denso’s AD R&D Mode
2.1.4 AD R&D Bases and Test Bases of Denso
2.2 Denso’s AD Products
2.2.1 Denso’s ADAS Product System
2.2.2 Denso Develops Next Gen Vision Sensor
2.2.3 Denso’s Stereo Vision Sensor
2.2.4 Denso’s Surround-view System
2.2.5 Denso’s Radars
2.2.6 Denso’s AVP System
2.3 AD Investment of Denso
2.3.1 Overview of Denso’s Investments in AD
2.3.2 Denso’s AD Investment Project Case I
2.3.3 Denso’s AD Investment Project Case II
2.3.4 Denso’s AD Investment Project Case III
2.3.5 Denso’s AD Investment Project Case IV

3. Smart Cockpit Products and Layout

3.1 Technical Layout of Denso Smart Cockpit
3.1.1 Technology Roadmap of Denso Smart Cockpit
3.1.2 Denso Combines HMI Technology with Air Conditioner Technology
3.1.3 Denso’s Smart Cockpit Investment I
3.1.4 Denso’s Smart Cockpit Investment II
3.2 Denso’s Smart Cockpit Products
3.2.1 Overview of Denso’s Cockpit Technologies
3.2.2 Denso’s Cockpit DCU
3.2.3 Denso’s DSM Products
3.2.3 Denso’s DSM Product: DSM for Commercial Vehicle
3.3 Terminal Products of Denso’s Smart Cockpit
3.3.1 In-Vehicle Display
3.3.2 HUD
3.3.3 Instrument
3.3.4 Car Navigation
3.3.5 Smart Communication System
3.3.6 V2X Module of Denso
3.3.7 Denso’ DCM
3.3.8 Automotive Air conditioner Controller of Denso
3.3.9 Other Cockpit Modules of Denso

4. Electrification Products and Layout

4.1 Electrification Business Layout of Denso
4.1.1 Main Products of Electrification Business of Denso
4.1.2 Revenue Target of Automotive Electrification Business of Denso
4.1.3 Direction and Target of Automotive Electrification Products of Denso
4.1.4 R&D Cooperation of Automotive Electrification Products of Denso
4.1.5 Global Market Shares of Major Electrification Products of Denso
4.1.6 Denso’s Global Layout in Electrification
4.1.7 Denso’s R&D Direction in Electrification
4.1.8 Electric Brand ELEXCORE
4.1.9 Denso’s Partnership in Automotive Electrification (I)
4.1.10 Denso’s Partnership in Automotive Electrification (II)
4.2 BMS of Denso
4.2.1 Denso’s BMS
4.2.2 NI-MH Battery Management System
4.2.3 Lithium Battery Management System
4.2.4 PHEV’s BMS (I)
4.2.5 PHEV’s BMS (II)
4.2.6 Control Module of BMS

5. Other CASE Technology Layouts

5.1 Denso MaaS
5.1.1 Denso MaaS: Establish digital twin
5.1.2 Denso MaaS: Mobility Service Terminal
5.1.3 MaaS in Fleet Management
5.1.4 Denso MaaS: Use of Real-Time Steaming Media Technology
5.1.5 Denso’s Investment Projects in MaaS Sector 
5.2 Denso’s Automotive Semiconductor Layout
5.2.1 Denso’s Automotive Semiconductor Layout I
5.2.2 Denso’s Automotive Semiconductor Layout II
5.2.3 Denso’s Automotive Semiconductor Layout III
5.3 Other CASE Investment Layout of Denso
5.3.1 OTA Investment and Partnership
5.3.2 Network Security Layout
5.3.3 Investment and Partnership, 2018-2019

6. Summary
6.1 Overview of Denso’s CASE Strategy
6.2 Competitive Advantages and Disadvantages of Denso’s CASE Strategy
6.3 Denso’s Integration Advantage Case
6.4 How Denso Succeeds
6.5 List of Software Companies Invested by Denso
6.6 Inspiration of Denso’s Development for Chinese Parts Vendors
 

End-to-End Autonomous Driving Research Report, 2025

End-to-End Autonomous Driving Research: E2E Evolution towards the VLA Paradigm via Synergy of Reinforcement Learning and World Models??The essence of end-to-end autonomous driving lies in mimicking dr...

Research Report on OEMs and Tier1s’ Intelligent Cockpit Platforms (Hardware & Software) and Supply Chain Construction Strategies, 2025

Research on intelligent cockpit platforms: in the first year of mass production of L3 AI cockpits, the supply chain accelerates deployment of new products An intelligent cockpit platform primarily r...

Automotive EMS and ECU Industry Report, 2025

Research on automotive EMS: Analysis on the incremental logic of more than 40 types of automotive ECUs and EMS market segments In this report, we divide automotive ECUs into five major categories (in...

Automotive Intelligent Cockpit SoC Research Report, 2025

Cockpit SoC research: The localization rate exceeds 10%, and AI-oriented cockpit SoC will become the mainstream in the next 2-3 years In the Chinese automotive intelligent cockpit SoC market, althoug...

Auto Shanghai 2025 Summary Report

The post-show summary report of 2025 Shanghai Auto Show,  which mainly includes three parts: the exhibition introduction, OEM, and suppliers. Among them, OEM includes the introduction of models a...

Automotive Operating System and AIOS Integration Research Report, 2025

Research on automotive AI operating system (AIOS): from AI application and AI-driven to AI-native Automotive Operating System and AIOS Integration Research Report, 2025, released by ResearchInChina, ...

Software-Defined Vehicles in 2025: OEM Software Development and Supply Chain Deployment Strategy Research Report

SDV Research: OEM software development and supply chain deployment strategies from 48 dimensions The overall framework of software-defined vehicles: (1) Application software layer: cockpit software, ...

Research Report on Automotive Memory Chip Industry and Its Impact on Foundation Models, 2025

Research on automotive memory chips: driven by foundation models, performance requirements and costs of automotive memory chips are greatly improved. From 2D+CNN small models to BEV+Transformer found...

48V Low-voltage Power Distribution Network (PDN) Architecture and Supply Chain Panorama Research Report, 2025

For a long time, the 48V low-voltage PDN architecture has been dominated by 48V mild hybrids. The electrical topology of 48V mild hybrids is relatively outdated, and Chinese OEMs have not given it suf...

Research Report on Overseas Cockpit Configuration and Supply Chain of Key Models, 2025

Overseas Cockpit Research: Tariffs stir up the global automotive market, and intelligent cockpits promote automobile exports ResearchInChina has released the Research Report on Overseas Cockpit Co...

Automotive Display, Center Console and Cluster Industry Report, 2025

In addition to cockpit interaction, automotive display is another important carrier of the intelligent cockpit. In recent years, the intelligence level of cockpits has continued to improve, and automo...

Vehicle Functional Safety and Safety Of The Intended Functionality (SOTIF) Research Report, 2025

Functional safety research: under the "equal rights for intelligent driving", safety of the intended functionality (SOTIF) design is crucial As Chinese new energy vehicle manufacturers propose "Equal...

Chinese OEMs’ AI-Defined Vehicle Strategy Research Report, 2025

AI-Defined Vehicle Report: How AI Reshapes Vehicle Intelligence? Chinese OEMs’ AI-Defined Vehicle Strategy Research Report, 2025, released by ResearchInChina, studies, analyzes, and summarizes the c...

Automotive Digital Key (UWB, NearLink, and BLE 6.0) Industry Trend Report, 2025

Digital key research: which will dominate digital keys, growing UWB, emerging NearLink or promising Bluetooth 6.0?ResearchInChina has analyzed and predicted the digital key market, communication techn...

Integrated Battery (CTP, CTB, CTC, and CTV) and Battery Innovation Technology Report, 2025

Power battery research: 17 vehicle models use integrated batteries, and 34 battery innovation technologies are released ResearchInChina released Integrated Battery (CTP, CTB, CTC, and CTV)and Battery...

AI/AR Glasses Industry Research Report, 2025

ResearchInChina released the " AI/AR Glasses Industry Research Report, 2025", which deeply explores the field of AI smart glasses, sorts out product R&D and ecological layout of leading domestic a...

Global and China Passenger Car T-Box Market Report 2025

T-Box Research: T-Box will achieve functional upgrades given the demand from CVIS and end-to-end autonomous driving ResearchInChina released the "Global and China Passenger Car T-Box Market Report 20...

Automotive Microcontroller Unit (MCU) Industry Report, 2025

Research on automotive MCUs: the independent, controllable supply chain for automotive MCUs is rapidly maturing Mid-to-high-end MCUs for intelligent vehicle control are a key focus of domestic produc...

2005- www.researchinchina.com All Rights Reserved 京ICP备05069564号-1 京公网安备1101054484号