Passenger Car Camera Market: Front-view Monocular Camera Installations Soared by 104% in 2019Q2 from the Same Period of Last Year.
In the first half of 2019, around 10.89 million cameras were installed in new passenger cars in China, a year-on-year upsurge of 19.93%, among which monocular camera grew faster than others, with installations soaring by a hefty 104% in 2019Q2 on a like-for-like basis, compared with a growth rate of 71.7% in 2019Q1, according to our recent report -- China Passenger Car Camera Market Report, 2019Q2.

In 2019Q2, the top three players Bosch, Aptiv and Valeo seized shares of 23.7%, 18.9% and 16.6% in the Chinese passenger car front-view monocular camera market, respectively. Bosch and Valeo witnessed a faster growth rate than other vendors.
A long postponement in mass production of highly automated driving systems saves major suppliers energy for application of L2 and L2.5. Even for L2, OEMs’ actual progress is a reminder that the technology is still unavailable to a range of scenarios. For example, Attention Assist and Traffic Sign Assist of 2019 new Maybach models and Toyota’s Pre-collision System cannot work under the following conditions.
Attention Assist
Maybach Attention Assist works at speeds between 60 km/h and 200 km/h: it is able to recognize signs of driver fatigue or distraction, and prompts the driver to take a break.

The ATTENTION ASSIST will be not fully exerted, and warnings may be delayed or not occur at all in the following situations:
If the driver has been driving for less than 30 minutes.
If the road condition is poor (uneven road surface or potholes).
If there is a strong side wind.
If the driver adopts a sporty driving style (high cornering speeds or high rates of acceleration).
If the driver drives at speeds between 60 km/h and 200 km/h.
If the Steering Pilot function of DISTRONIC is active.
If the time is set incorrectly.
In active driving situations, if the driver changes lanes and vary their speed frequently.
Traffic Sign Assist
Traffic Sign Assist detects traffic signs with versatile camera and assists the driver by displaying detected speed limits and overtaking restrictions in the instrument cluster. If the system detects that users are driving onto a section of road in the wrong direction, it triggers a warning. A camera on the inside of the windscreen is able to identify road signs at the road side. Data stored in navigation system and general traffic rules are also used to estimate the current speed.
When the vehicle travel through related traffic signs, its speed limit and overtaking restriction will be updated. The system can update the display in the following situations without detecting traffic signs:
When the vehicle changes roads, e.g. freeway exit or ramp
When driving through a village or town borders which are stored in the digital map
When traffic signs the camera detected last time are not there
End sign of restrictions (speed limit or overtaking) will be displayed 5 seconds after the vehicle passes over. Traffic rules available to the current condition will be still displayed on the assist system.
The camera also detects traffic signs with a restriction indicated by an additional sign (e.g. in wet conditions). Only in the following situations can these signs be displayed:
When restriction rules must be complied with, or
When the Traffic Sign Assist system is unable to determine whether restrictions are available or not, speed limits will not be displayed on the instrument cluster if not known from any sources.
The system may be either functionally impaired or temporarily out of work in the following situations:
If there is poor visibility, e.g. due to rain, snow, fog or spray
If there is glare, e.g. from the sun being low in the sky
If there is dirt, ice or misting on the windscreen in the area of the camera
If the traffic signs are hard to detect, e.g. due to dirt, ice or snow
If there is inadequate lighting of the traffic signs at night
If the signs are blurry, e.g. traffic signs on construction sites or in adjacent lanes
If the information in the digital street map of the navigation system is incorrect or out of date
Toyota Pre-collision System (PCS)
Toyota’s Pre-Collision System (PCS) renders an in-vehicle camera and laser to detect pedestrians and other vehicles in front of the vehicle. If it determines possibility of a frontal collision, the system will prompt the driver to take action and avoid it with audio and visual alerts. If the driver notices the potential collision and apply the brakes, the Pre-Collision System with Pedestrian Detection (PCS w/PD) may apply additional force using Brake Assist (BA). If the driver fails to brake in time, it may automatically apply the brakes to reduce the vehicle’s speed, helping to minimize the likelihood of a frontal collision or reduce its severity.
In some situations (such as the following), a vehicle/pedestrian may not be detected by the radar and camera sensors, thus preventing the system from operating properly.
When an oncoming vehicle approaches
When the preceding vehicle is a motorcycle or a bicycle
When approaching the side or front of a vehicle
If a preceding vehicle has a small rear end, such as an unloaded truck
If a preceding vehicle has a low rear end, such as a low bed trailer
When the preceding vehicle has high ground clearance
When a preceding vehicle is carrying a load which protrudes past its rear bumper
If a vehicle ahead is irregularly shaped, such as a tractor or sidecar
If the sun or other light is shining directly on the vehicle ahead
If a vehicle cuts in front of your vehicle or emerges from beside a vehicle
If a preceding vehicle ahead makes an abrupt maneuver (such as sudden swerving, acceleration or deceleration)
When a sudden cut-in occurs behind a preceding vehicle
When a preceding vehicle is not right in front of your vehicle
When driving in bad weather such as heavy rain, fog, snow or a sandstorm
When the vehicle is hit by water, snow, dust, etc. from a vehicle ahead
When driving through steam or smoke
When amount of light changes dramatically, such as at a tunnel exit/entrance
When a very bright light, such as the sun or the headlights of oncoming vehicle, beat down the camera sensor
When driving in low light (dusk, dawn, etc.) or when driving without headlights at night or in a tunnel
After the hybrid system has started and the vehicle has not been driven for a certain period of time
While making a left/right turn and within a few seconds after making a left/right turn
While driving on a curve, and within a few seconds after driving on a curve
If your vehicle is skidding
If the front of the vehicle is raised or lowered
If the wheels are misaligned
If the camera sensor is blocked (by a wiper blade, etc.)
If your vehicle is wobbling
If your vehicle is being driven at extremely high speeds
While driving up or down a slope
When the camera sensor or radar sensor is misaligned
In some situations (such as the following), braking force may be not enough to make PCS work normally:
When braking function fails to work normally due to undercooled, overheated or wet braking parts
When the vehicle is maintained improperly (brake/tires over worn, abnormal tire pressure, etc.)
When the vehicle travels on gravel roads or other slippery roads
PCS should be disabled when radar and camera sensor may not recognize a pedestrian in the following circumstances:
When a pedestrian is 1m or shorter or 2m or taller
When a pedestrian wears oversized clothing (a rain coat, long skirt, etc.), obscuring the pedestrian’s silhouette
When a pedestrian carries large baggage, holds an umbrella, etc., hiding part of the body
When a pedestrian leans forward or squats
When a pedestrian pushes a pram, wheelchair, bicycle or other vehicle
When pedestrians are walking in a group or are close together
When a pedestrian is in white that reflects sunlight and looks extremely bright
When a pedestrian is in the darkness such as at night or while in a tunnel
When a pedestrian has clothing with brightness/color similar to scenery and that blend into the background
When a pedestrian is staying close to or walking alongside a wall, fence, guardrail, vehicle or other obstacle
When a pedestrian is walking on top of metal on the road surface
When a pedestrian walks fast
When a pedestrian abruptly changes walking speed
When a pedestrian runs out from behind a vehicle or a large object
When a pedestrian is very close to a side (external rearview mirror) of the vehicle
ADAS suppliers and OEMs work together on product and technology development to make breakthroughs in so many inapplicable scenarios, so that ADAS can get improved and become safer. All players still have a long way to go before autonomous driving comes true.
End-to-End Autonomous Driving Research Report, 2025
End-to-End Autonomous Driving Research: E2E Evolution towards the VLA Paradigm via Synergy of Reinforcement Learning and World Models??The essence of end-to-end autonomous driving lies in mimicking dr...
Research Report on OEMs and Tier1s’ Intelligent Cockpit Platforms (Hardware & Software) and Supply Chain Construction Strategies, 2025
Research on intelligent cockpit platforms: in the first year of mass production of L3 AI cockpits, the supply chain accelerates deployment of new products
An intelligent cockpit platform primarily r...
Automotive EMS and ECU Industry Report, 2025
Research on automotive EMS: Analysis on the incremental logic of more than 40 types of automotive ECUs and EMS market segments
In this report, we divide automotive ECUs into five major categories (in...
Automotive Intelligent Cockpit SoC Research Report, 2025
Cockpit SoC research: The localization rate exceeds 10%, and AI-oriented cockpit SoC will become the mainstream in the next 2-3 years
In the Chinese automotive intelligent cockpit SoC market, althoug...
Auto Shanghai 2025 Summary Report
The post-show summary report of 2025 Shanghai Auto Show, which mainly includes three parts: the exhibition introduction, OEM, and suppliers. Among them, OEM includes the introduction of models a...
Automotive Operating System and AIOS Integration Research Report, 2025
Research on automotive AI operating system (AIOS): from AI application and AI-driven to AI-native
Automotive Operating System and AIOS Integration Research Report, 2025, released by ResearchInChina, ...
Software-Defined Vehicles in 2025: OEM Software Development and Supply Chain Deployment Strategy Research Report
SDV Research: OEM software development and supply chain deployment strategies from 48 dimensions
The overall framework of software-defined vehicles: (1) Application software layer: cockpit software, ...
Research Report on Automotive Memory Chip Industry and Its Impact on Foundation Models, 2025
Research on automotive memory chips: driven by foundation models, performance requirements and costs of automotive memory chips are greatly improved.
From 2D+CNN small models to BEV+Transformer found...
48V Low-voltage Power Distribution Network (PDN) Architecture and Supply Chain Panorama Research Report, 2025
For a long time, the 48V low-voltage PDN architecture has been dominated by 48V mild hybrids. The electrical topology of 48V mild hybrids is relatively outdated, and Chinese OEMs have not given it suf...
Research Report on Overseas Cockpit Configuration and Supply Chain of Key Models, 2025
Overseas Cockpit Research: Tariffs stir up the global automotive market, and intelligent cockpits promote automobile exports
ResearchInChina has released the Research Report on Overseas Cockpit Co...
Automotive Display, Center Console and Cluster Industry Report, 2025
In addition to cockpit interaction, automotive display is another important carrier of the intelligent cockpit. In recent years, the intelligence level of cockpits has continued to improve, and automo...
Vehicle Functional Safety and Safety Of The Intended Functionality (SOTIF) Research Report, 2025
Functional safety research: under the "equal rights for intelligent driving", safety of the intended functionality (SOTIF) design is crucial
As Chinese new energy vehicle manufacturers propose "Equal...
Chinese OEMs’ AI-Defined Vehicle Strategy Research Report, 2025
AI-Defined Vehicle Report: How AI Reshapes Vehicle Intelligence?
Chinese OEMs’ AI-Defined Vehicle Strategy Research Report, 2025, released by ResearchInChina, studies, analyzes, and summarizes the c...
Automotive Digital Key (UWB, NearLink, and BLE 6.0) Industry Trend Report, 2025
Digital key research: which will dominate digital keys, growing UWB, emerging NearLink or promising Bluetooth 6.0?ResearchInChina has analyzed and predicted the digital key market, communication techn...
Integrated Battery (CTP, CTB, CTC, and CTV) and Battery Innovation Technology Report, 2025
Power battery research: 17 vehicle models use integrated batteries, and 34 battery innovation technologies are released
ResearchInChina released Integrated Battery (CTP, CTB, CTC, and CTV)and Battery...
AI/AR Glasses Industry Research Report, 2025
ResearchInChina released the " AI/AR Glasses Industry Research Report, 2025", which deeply explores the field of AI smart glasses, sorts out product R&D and ecological layout of leading domestic a...
Global and China Passenger Car T-Box Market Report 2025
T-Box Research: T-Box will achieve functional upgrades given the demand from CVIS and end-to-end autonomous driving
ResearchInChina released the "Global and China Passenger Car T-Box Market Report 20...
Automotive Microcontroller Unit (MCU) Industry Report, 2025
Research on automotive MCUs: the independent, controllable supply chain for automotive MCUs is rapidly maturing
Mid-to-high-end MCUs for intelligent vehicle control are a key focus of domestic produc...